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Eigenvalue Approach to the Efficient
Determination of the Hybrid and Complex
Spectrum of Inhomogeneous, Closed Waveguide

Tullio Rozzi, Fellow, IEEE, Luca Pierantoni, and Marco Farina

Abstract—Many hybrid modes are required in computing As will be described briefly, the new expanding functions
the fields scattered from discontinuities in structures such as feature some very remarkable properties that greatly simplify
finline, coplanar waveguide, or microstrip. The authors present analytical model as well as the discretization process.

a new analytical method based on an eigenvalue formulation of M thei d t d icall
the generalized telegrapher’s equations discretized by using the oreover, their use produces a compact and numerically

modes at cutoff as an expanding set. This approach produces aeﬁective algorithm for traCing the diSperSion Characteristics
compact theoretical model while providing at the same time an of numerous modes of the spectrum, as required, e.g., in
effective algorithm for finding the characteristics of many modes, abrupt discontinuity problems. The modes resulting from this
including their below cutoff and complex behavior. The theoret- . thqad are not automatically orthonormal, but if required, they

ical approach gives some direct insights about the appearance of s . .
complex modes. Due to the explicit formulation of the eigenvalue be made so by application of the classical Gram-Schmidt

equation for the complex propagation constant, the proposed algorithm.
method overcomes some of the typical drawbacks of the currently ~ Numerical examples of ordinary and complex propagation

used algorithms, such as the limited numerical accuracy and are provided for the case of unilateral finline with infinitely
efficiency, the numerical degeneracy and appearance of spurious pin metallization.

solutions, the inability to trace the characteristics of degenerate . - . .
modes. Numerical results for ordinary and complex propagation It is noted that although finite thickness is currently ac-

in finline show excellent agreement with existing data. counted for in recent works on this subject [9], [10], because
of its singular edge condition, the thin case actually poses the
hardest convergence test of the field expansion.
|. INTRODUCTION

PART from numerical techniques, the semi-analytic de- Il. THEORY

termination of the hybrid modes of common lossless The authors start with the field equations governing the

reciprocal metal-dielectric guides such as finline and mpropagation of the transverse fields along the guide, in absence
crostrip is currently based on transverse resonance in @fssources as in [5]. These are
spectral domain approach (SDA) [1] or transverse resonance IE, ) = 1 )
diffraction (TRD) version [2]. A coupled transmission line 92 :_JWN<I+Vt 52 Vt) -(Hy x 2)
approach, obtained in terms of the modes of the empty guide oH, 1
is used in the literature as a tool appropriate for theoretical =
investigation, but unsuited for numerical implementation [3], 0z k
[4] due to the very large number of coupled transversehere E; = e;e™?%4, H, = h,e™?Z are the transverse
electric/transverse magnetic (TE/TM) lines resulting from thisomponents of the hybrid fieldl is the dyadic identity,
discretization of the guide. k? = e,.k3, ko is the free-space wavenumbey; h; each con-

Starting from the differential equations governing the propain both longitudinal-section (LSE)/electric-magnetic (LSM)
agation of the transverse fields along the guide [5], howeveomponents which separate at cutoff [6], where- 0.
it is possible to formulate and discretize a direct eigenvalue|f the authors writee; = elSE +el5M | h, = hISE 4 hlSM,
problem in terms of a new set of frequency-independent raak following properties of these components can also be
vector fields thatimplicitly satisfy all boundary and edgeproved at cutoff (see the Appendix):

= —jwe, o <f+ V. vt> (ZxE) (1)

conditions of the real problem, coinciding with the exact LSM

hybrid fields at the modal cutoffs. The formal completeness e =€ = (ea ey)

of the new expanding functions set is guaranteed by the ez =020,V

fact that they constitute the eigenfunctions of the transverse ey = (e,.k} + 85)\1/6

wave equation (5). Orthonormality of the expanding set is not SM = (2a)

actually required in the discretization process.
by =h}SE = (h,, hy)
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(92 + 85 + s,,kfejh)\lfe, r=0 yielding, after integration over the cross sectifn
Vt . eLSM =0 - Vh B - 1 -~ Qh 0 Ih
vt . hLSE -0 (3) ’YA Ve = Ho sA + g A 0 0 Ie (Ba)
. . . . < I 5 1x/0 0 A%
where ¥ ¥, are the electric/magnetic Hertzian potentials, vA 4 I | = sC+ EC 0 0 ve |- (8b)
ke, the cutoff wavenumbers of the LSE/LSM parts of the ¢

field, respectively; from Lorentz's theorem, the authors haveguations (8a) and (8b) form the sought compact version of
for the LSE/LSM components of two distinct modes,(r): (1), beings = jw and

‘/lh
e, re dS = h., - h., dS 4a

// "ot B M 0// " (42) Viw) = | v

s S :
// ee., -e, dS :uo// h, -h, dS. (4b) .

Vi
S S veior = | v
Moreover, it can be shown that the LSE/LSM components (W) = 2
at cutoff are solutions of the following transverse eigenvalue :
equations and, consequently, they form a complete set I}
2 Ih — Ih

VALV, e xa)} =B ptse 5 (sq) =1

k? kg :

2 e

Vt{% Vi (2 % etLSM)} = —% zxeSM  (5b) i

0 W= (©)

On account of these noteworthy properties of the LSE/LSM
modal components at cutofthe authors select these as an ) o
expanding set for the transverse fielitsthis way all boundary P€ing the vectors of the LSE/LSM amplitudes appearing in (6).
and edge conditions are implicitly enforced and satisfied; in !N (8) and (8b) the authors introduced
par(tjicular, the authors expand the transverse fields of a hybrid 973 :diag(/gfhl, el kt%m)
mode as

Q. =diag(k?, , -, K} )
Ew)= > Vi@ x2)+ Y Vi(we, (6a)

HELoE i A is the real matrix formed by the “overlapping” of the real

\ . expanding functionsA+(= A?) its hermitian conjugateC
Hy(w) = Z Li(w)hy, + Z Li(w)(z x er,). (6D)  gescribes the same ov(erlapp)ing weighted by the dielectric
keLSE keLSM constants. Both these matrices are block-partitioned and of
By substituting (6) in (1) and exploiting the above propthe Hermitian type:
erties (3)—(5), the authors will recover a particularly simple, ~ A A
discretized version of (1). = {A; A;ﬂ
As a starting point the authors insert the transverse fields

E, and H, (6) in (1), obtaining =Af,
; Afpt = // h; -hy, dS
- Z Vit(w) (he, x 2) + Z Vi (w)ey, S
k k
AP = // (b x2)-e,, dS
=— jwp [Z L (w) (hyy x 2) + Y Ii(w) etk] s
* 2 : ARP = // ef e, dS (10a)
+ion Y 10) | (e x 2) (7a) :
k 2 C C
c-lcn cplen
_W[ZI’?(w) h, +ZI,§;(w) (2 x etk)] 4
k k =Cp,
m,p __ *
= — jwe | > Viw)hy + ) Vi (w) (2 etk)] € _// ehi,, - b, d5
S
k k
. LA cyr :// hi x2z)-e,6dS
—i—ywsZVk{ﬁ (2 x etk)} (7b) 12 ) ehr, x2) e,
k
Now the authors form the scalar product betwe@rf x C’Q’;P:// cej, e, ds,  m,p=1,---,n.(10b)
z),eh, (k=1,---,n) and (7a) and (7b)<z, respectively, S
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Since the fields are, in fact, real, the authors have= Once the frequency is fixed, each eigenvaldéw) yields
At;C = Ct. the corresponding eigenvectbr= [L], which, in turn, gives

The Q;, . are diagonal matrices formed by the squares @fe transverse modal magnetic fieldl; in (6b). The other
the LSE/LSM cutoff frequencies, respectively. It is also notegigenvectorV = [x’e‘], producing the TE fieldE, in (6a),
that at cutoff { = 0), the right-hand side (RHS) of (8) becomezan be easily derived from (8a). The longitudinal components

eigenvalue equations for the cutoff frequencies. E., H. are evaluated as in [4]:

It is noted that the expansion functions individually satisfy
boundary and edge conditions on strips/apertures, being the H. = Vi (z x Ey)
exact solutions at cutoff. In fact, a single term expansion in Jwp
(6) is very accurate for an ordinary mode even well above E — V- (H; X z)
cutoff. o jwe '

Each of the two systems (8a) and (8b) is constituted . . . . S

by 2n-linear equations indn-unknown expanding coeffi- It is particularly convenient to deal with thexplicit eigen-
cients VP ... VR Ve ... ye Ih ... k. e ... Je value (12), for, in this case, the eigenvaluééw) are obtained
therefore 1(8a) "and (él;) can. 7be1 ’corr;birr;édl’in order B @ direct manner through the solution of (13), by means of
form a single system characterized I3n-equations in any one of the many reliable and compact algorithms that are
2n-unknown  coefficients V{*, -+, Vv, - Ve, (or currently available. -
I b e I¢): its determinant is a polynomial On the other hand, in the standard Transverse Resonance
1" s dns 41y 777y dn)s . .
equation for the square of the complex propagation constaMeth.OdS’ the .cons.tr.uctllon of the modal CUTVes 1S based on the
+2 solution of animplicit eigenvalue problem in a more general
Firstly, the authors premultiply (6a) and (6b) B! (the sense, that is, of the type:
inverse of_.Az assumed nonsingular) and divide both members Z[% ~w)]x =0 (14a)
by ~ obtaining

where Z is the transverse immittance of the guide and the
[V’L} 4 { It 1 <Qh 0)} {Ih} (11) dispersion curves are evaluated by imposing the condition:

Vel T 0 0))|I .
Jy(w)] = det {Z[w, ()]} = 0 (14b)

where the difficulty is posed by the search of the complex
zeros of the rapidly varying functiofi[y(w)].

v

S

Substituting[xg] from the above equation in (8b) yields

JA* {Ih} _p [Sc n 1 (~3<0 0 )} Another difficulty is usually constituted by the exact con-
I ~y s 0 struction of the modal characteristics, that is the correct
s 1/, 0 1" at_tribution to the{cth m_ode of the correspondir@_(w) curve
s\0 0 I¢ without overlapping with other curves. In synthesis, the present

method consists of three steps.

hence, fors = jw: 1) Search of the cutoff frequencies and their related trans-
verse vector fields components, h, to be used as

5« [IM 9 [T expanding eigenfunctions in (6a) and (6b).
A [Ie} = —wpuCT [Ie} (12) 2) Solution of the eigenvalue equation (13) and determina-
tion of the corresponding eigenvect®i(w), I{w).
where 3) Construction of the dispersion characteristics and of the
B o modal field for every mode under investigation.
= { Oh F’J The second step is the kernel of the present method which

5 is applicable to any type of lossless closed waveguide, being
I, .= diag<1 _ “to, ) able to describe any type of propagating mode in the structure,

w? that is, ordinary modes (apart from the TEM mode) as well as
. complex modes, as illustrated in the next paragraph.
that is, I' is a diagonal matrix with elements of the type: Comparing the explicit eigenvalue equation (13) and the
1-wi [ wy, , being the cutoff frequency of the LSM standard dispersion equation (14b) some of the most attractive
or LSE component in (6a) and (6b). In (12), the authors todkatures of the former become evident.

into account thaA* = A (the field at cutoff being pure real). a) Cutoff fields and frequencies are easier to compute then

Equation (12) can be rewritten as ordinary points: once they have been computed by means
of any technique, e.g., the TRD method, the dispersion

’y_QA{Ih} __le&p [Ih} (13) curves are found by finding the eigenvalues of (13):

K0 e Ie | this is a simple task and it takes only a negligible time

with respect to using (14b). Consequently, our algorithm
Consequently, the authors are left with just a generalized becomes increasingly advantageous and effective as the
eigenvalue problem fory?. frequency band to be scanned increases.
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Due to the particular choice of the discretizing functiondn order to obtain complex modes:
just two expanding functions are normally involved from
an ordinary mode, one LSE, the other LSM, so that ma- P :// (E; x HY) - dS
trix dimensions are very small and numerical accuracy is =
inherently high. On the other hand, techniques that rely —TtAV
4 1 1
on equations such as (14), have to handle cumbersome

16
matrices with nearly vanishing determinants, posing =I'QL
the well known problems of numerical accuracy and =0
numerical degeneracy (spurious solutions, crossing of Py :// (E; x H3) - dS
characteristics). This is also true for the determination e
of fields: the frequency dependence of the field is _THAV
contained in the coefficient; and I and (6) allows i~ 2
this dependence to be computed at all frequencies very =L QL
simply. =0. a7)
At cutoff the modes are pure LSE or LSM; by using one

mode LSE and one LSM as expanding functions, the In the bilinear forms (17)L;(w), Vi(w) are the eigen-
authors can trace two hybrid characteristics, originatingfctors of (8) corresponding to the complex eigenvalue
from the two cutoff modes. By repeating this proce?s 12(w); V2(w) those corresponding to the complex con-
dure, a number of modal characteristics can be tracdggate eigenvaluey™. P, represents the power carried by
the existence of degenerate modes does not pose i first mode I, (w), Vi(w)] when the authors consider
particular problem. When solving (14), instead, it ofteff individually, i.e., not coupled with the second one
happens that when following the zeros of the determffharacterized byly(w), Vz(w). Dually, P» represents the
nant, the numerical solution skips from one characteristtOWer carried bfl>(w), V(w), when the authors consider it
to another, particularly when dealing with degeneraf¥ its own, i.e., not coupled with (w), V1(w). _
modes. Indeed, our approach allows to correctly trace©n the other hand, the complex power carried by a pair
the characteristic curves for many modes, overcomirdj COMplex modes, that is when bolh, V, andI,, V, are
the problems associated with degenerate modes dyPled to each other, must be nonvanishing, that is

avoiding the appearance of spurious solutions.
. COMPLEX MODES S
_ =IfAV,
The main features of complex modes are as follows: QI
= 2 1

1)

2)

From a physical point of view, (15) represents just th

they have complex propagation constants despite the
lossless nature of the structure; =p

a single complex mode carries no complex power, Py :// (E, x HY) -dS
two complex waves form a pair that is not orthogonal

with respect to cross power and consequently a pair s

_T+A
as a whole behaves as an ordinary mode below cutoff =1 I}VQ
carrying purely reactive power. Now let us consider =1} QL
equation (8a) and form the scalar product = —p*. (18)
ITAV =T"QI (15)  Since the sum of?;, and P»; produces just reactive power,

where the authors have set: a pai_r of complex modes behaves as a m(_)de below cutoff
' carrying purely reactive power; they form a pair not orthogonal
Q= Ho {SA_F 1A<Qh 0)} over the cross section. 5
vy s 0 0 In general, in order to satisfy (17), th® matrix must to be
igdefinite; this result is in accordance with that reported in [8].

complex power carried by a single mode, that is

IV. RESULTS
P:// (E x H*) - dS
2 A. The Unilateral Finline
=ITAV The authors now compare the results of the new approach
=ItQI (16) with existing ones in the case of finline with thin metallization,

as in this case the inverse square root edge condition poses the

beingV = V(w), I = I(w) [I*T(w) is its Hermitian conju- hardest convergence test of the fields.

gate], the eigenvectors corresponding tg-aigenvalue. As discussed in the previous section, the present method
In the light of (15), (16) and taking into account property 2)equires an independent initial calculation and storage of

above, the authors derive necessary and sufficient conditionsdal cutoffs and of the LSE/LSM components of the field
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Fig. 1. Unilateral finline cross section;= 10.16 mm,l = h + s = 11.43
mm, s = 0.254 mm, 2w = 0.2a, &, = 2.2. -0.8 1 T T [ T
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theoretical Fig. 3. Attenuation constants for the first six modes.
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Fig. 2. Comparison between present theoretical data, TRD results and ex- @)

perimental values of the dispersion curves [6].

distributions at cutoff to be used in (6) and (13). The prop-
agation constant being zero, this is a quick process, that can
be accomplished once by using any classical technique, e.g., 0.5
TRD as employed in [2] or [6]. It is noted that the precision
required in the cutoff frequencies is an order of magnitude §
higher than for the cutoff fields, the latter not constltutlngm 0+
particularly sensitive data. o™
Also the authors have to compute only once the frequency
independent matriced, C appearing in (8), (13) from the -0.5
stored fields values at cutoff. After this point, the solution
of (8), (13) and the tracing of dispersion characteristics is
a virtually analytical task, for the prudent choice of the
expanding set ensures priori satisfaction of all boundary
and edge conditions so that the dimensions of matrke€
are very limited indeed; just two terms, one LSM, one LSE ®)

(overall system dimensions # 4) are sufficient to describe Fig. 4. 0(1511)4?(1 %1) tfield belhaViOF for Ehe f:n”ﬂe dOf hFig |l Wit$RD

y1 = mm (continuous line: present analysis; dashed lines:
even a complex mode. [6]). (b) Ey(x, y1) field behavior for finline in Fig. 1, withy; = 0.1143
mm (continuous line: present analysis; dashed lines: TRD [6]).

present method

-1 T T
-5.08 -2.54 0 2.54 5.08

B. Ordinary Modes

Fig. 1 shows the finline cross section adopted in the num&p! the first two modes of the above finline; one notes that
ical examples of Figs. 2—4; the geometrical characteristics affgoretical results of [6] are indistinguishable from the present
cutoff frequencies computed by TRD for the first 15 mode@nes. The running time required for this computation is greatly
are shown in Table I. reduced with respect to the TRD approach: this is mainly due

In Fig. 2, the authors compare the propagation constamtsthe explicit form of the eigenvalue equation, not requiring an
computed by this approach with experimental values of [@prative algorithm; moreover the above feature is responsible
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Fig. 6. Dispersion curves for the 10th (LSM) and 11th (LSE) modes of the

Fig. 5. Dispersion curves for the finline of Table II, witho = 1.1 mm. A ;
finline of Table Il Qw = 1.1 mm, the same of Fig. 4).

TABLE |

MobAL CuTorFF FREQUENCIES OF THEFIRST 15 MODES FOR THEFINLINE OF FIG. 1 TABLE I

GEOMETRY AND PERMITTIVITY DEFINING THE SECOND EXAMPLE OF FINLINE

order Cut-off frequency (GHz) type
1 5.1681 LSM a 3.556 mm
2 13.144 LSM s4+h 3.556 mm
3 16.005 LSM s 0.254 mm
4 26.224 LSM l 3.556 mm
5 26.227 LSM &r 2.22
6 27.251 LSM
7 29.410 LSM TABLE I
8 30.240 LSE CuTtoFF FREQUENCIES OF THEFIRST 15 MODES FOR THEFINLINE OF TABLE Il
9 30.240 LSM order F. (GHz) F. (GHz) type
10 31.956 LSE 2w =1.1 mm 2w = 1.3 mm
11 32.290 LSE 1 15.561 16.256 LSM
12 34.516 LSE 2 42.123 42.123 LSM
13 34.517 LSM 3 49.699 50.756 LSM
14 39.206 LSE 4 82.397 82.429 LSM
15 39.269 LSM 5 84.029 84.042 LSM
6 84.370 84.435 LSM
for a great improvement in all cases where modal degeneracy ’ 91.281 88.673 LSM
L . . 8 93.947 93.760 LSE
occurs. Some examples of this kind are depicted in Fig. 5. 9 94.216 94.206 LSE
In Fig. 3, .the authors show the_ attenuation constants com- ;4 102.097 102.609 LSM
puted by this approach, for the first six modes, whereas the 11 102.100 102.609 LSE
authors report in Fig. 4(a) th&,.(z, y) field behavior, the 12 116.428 116.428 LSE
main field component, at the point = 0.1143 mm that 13 117.650 117.656 LSE
falls in the dielectric, but very close to the fins; this location 14 119.055 118.998 LSM
119.055 121.593 LSE

is significant, since the EM field decays very quickly away
from the fins; Fig. 4(b) shows thé&,(x, y) field behavior

at the same point: in both cases results are compared witlfo this purpose, the authors refer to another finline, whose
those computed with the TRD method and good agreemengi®ometrical parameters and some significant cutoff frequen-

obtained. These results validate our approach. cies for the first 15 modes are shown in Tables Il and I,
respectively.
C. Complex Modes Fig. 5 shows the dispersion curves fap = 1.1 mm in this
Previous works have demonstrated that finline can suppfindine geometry. As can be noted, some modal characteristics
complex waves [7]-[10]. cross over and the scanned frequency range is large: computing

If the unperturbed guide, i.e., the rectangular metallic bdimes however are but a fraction of the usual reported in [2]
loaded with a dielectric slab without the fins, allodsgener- and [6].
atemodes, one of the LSE-type, the other of the LSM-type, by If the authors consider the characteristics of the 10th (LSM)
introducing the fins, it is possible to produce complex modeand 11th (LSE) modes, reported in Fig. 6, the authors observe
even if the permittivity of the dielectric slab is low. that their cutoff frequencies virtually overlap apart for a narrow
Physically, the metallic insert is a source of diffraction and iange near cutoff; the two modes are phase matched over a
causes energy coupling between the two degenerate LSE/LBiMad band, while, at the same time, separately carrying active
modes: this fact is a prerequisite for the appearance of compfmwer, being ordinary propagating modes.
waves. Hence the ability of the present approach of effectivelyBelow cutoff, howeverthey form a pair of complex modes
treating degenerate modes is a very convenient feature for the other hand, if the fins are removed, these two modes
investigating complex modes. become degenerate. If the authors expand the EM field (6) as a
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Fig. 7. (a) Dispersion characteristics of a pair of complex modes for t . . - .
finline defined in Table II, witkzw = 1.1 mm. (b) Distribution of the modal ig. 8. (@) Dispersion characteristics of a pair of complex modes for the

power pertaining to the complex modes in (a). Dashed line: power of a sin%l%“ne def'”‘?d. in Table II, witi2w = 1.3 mm. (®) DIStI’Ibu.tIOr.] of the modal_
complex mode: continuous line: power of a pair of complex modes ower pertaining to the complex modes in (a). Dashed line: power of a single
' ' ’ complex mode; continuous line: power of a pair of complex modes.

I'r:]e"j{ c%mb|nqt|ondpf these twohmode:; at cu'g)ff.and ConStr;JCtThe above quadratic forms are easily calculated, having
the A, C matrix (dim 4 x 4), the authors obtain a pair OrPrevioust formed the (4 4) A matrix.

F:omplex conjugate” solution.s;.that is, a two-term eXPaT‘SiO P, and P, represent the power carried by a single complex
is perfectly capable of describing complex characteristics. mode; P,, and P, are related to the power carried by a pair

In Figs. 7(a) and 8(a) the propagation and attenuation COcﬁ'complex modes; namely, the authors have to verify that
stants of finlines with aperturésy = 1.1 mm and2w = 1.3

mm, respectively, are reported.

The authors now verify that the power conditions (18) are P=P=0 and {?2 - (19)
satisfied by computing 12=-P

i in order to produce a pair of complex modes.
Py :// (E; x HT) -dS =1 AV, In Fig. 7(b) the modal power distribution corresponding to
S the complex propagation constant of Fig. 7(a) is shown; the
. a1+ A authors observe that the condition (19) is verified over the
P = // (Ez x H3)-dS =I; AV, range 20-80 GHz within the bounds of the discrete truncation
S

error; the computed power carried by a single complex mode is
Py :// (E1 x H}) - dS = I;AV1 negligible or much less than that carried by a pair of complex
2 modes.
. Analogous considerations hold, in the range 30-50 GHz for
Py I// (E; x HY) -dS =T AV,. the finline with2w = 1.3 mm, as shown in Fig. 8(b), verifying
S that the authors are dealing with complex modes.
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V. CONCLUSIONS At the modal cutoff frequencie§v = w;, v = 0), the above

The authors present a theoretically compact and compufiglds reduce to

tionally efficient analysis of the propagation of hybrid modes
in closed waveguides. Numerical examples were obtained for

s . e eg(x, y) = 0,0,V (2, y)
ordinary and complex propagation of many modes in finline s 2 LSM
in excellent agreement with existing data. ey(@, y) =(erki, + ) Ve(z, y) = ez, y) =¢

Due to the explicit formulation of the eigenvalue equation e.(z, y) = — jwud, Vi(z, y) (A6a)
s seon 0 Overcome. somé of the ypical crawbacks of the. " 1) =0 e(z. 1)

— _ 1.LSE

currently used algorithms, such as low numerical accuracy an ul(@; y) = (5”k +9, P Un(z,y) = he(z, y) =Dy
efficiency, numerical degeneracy, the appearance of spuriou§=(%; ¥) =jwed:¥.(z, y) (A6b)

solutions, and the inability of tracing correctly the crossing

characteristics of degenerate modes.
This is a prerequisite for evaluating by modal method¥€r€ &, . are cutoff wavenumbers of the LSE/LSM parts

discontinuities in planar and other hybrid transmission mea;?é”the_ field, respectively. The potential;,, V. satisfy the
by means of small computers. ollowing equations

APPENDIX (024 0] +er ki )V =0, (A7)
In a lossless reciprocal metal-dielectric guide the electro-

magnetic (EM) field is hybrid in general, being constituted of .
coupled LSE and LSM components. For# w, = k¢ the From (A6) and (A7), the authors can easily show that

authors have

(377 y) _e£SE LSM V eLSM 0 (A8a)
h,(z, y) =hSM 4 hLSE (A1) V. -h%F =0 (A8b)
At cutoff (w = wy, v = 0) the authors obtain the well-known
separation of the LSE-LSM components: and
ei(x, y) =™
hy(z, y) =hFSE (A2) 2 {% Vi - (RS x 2)} =— ’Z; (hSE x 2)  (A9a)

The fields in a medium stratified alongcan be derived by LSM 2 LSM
means ofy-directed electric/magnetic Hertzian vector poten- Vi 52 Vi (2xe™) = k2 y (2xe). (A9D)
tials I1., 1I;,. Consequently
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