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Determination of the Hybrid and Complex

Spectrum of Inhomogeneous, Closed Waveguide
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Abstract—Many hybrid modes are required in computing
the fields scattered from discontinuities in structures such as
finline, coplanar waveguide, or microstrip. The authors present
a new analytical method based on an eigenvalue formulation of
the generalized telegrapher’s equations discretized by using the
modes at cutoff as an expanding set. This approach produces a
compact theoretical model while providing at the same time an
effective algorithm for finding the characteristics of many modes,
including their below cutoff and complex behavior. The theoret-
ical approach gives some direct insights about the appearance of
complex modes. Due to the explicit formulation of the eigenvalue
equation for the complex propagation constant, the proposed
method overcomes some of the typical drawbacks of the currently
used algorithms, such as the limited numerical accuracy and
efficiency, the numerical degeneracy and appearance of spurious
solutions, the inability to trace the characteristics of degenerate
modes. Numerical results for ordinary and complex propagation
in finline show excellent agreement with existing data.

I. INTRODUCTION

A PART from numerical techniques, the semi-analytic de-
termination of the hybrid modes of common lossless

reciprocal metal-dielectric guides such as finline and mi-
crostrip is currently based on transverse resonance in its
spectral domain approach (SDA) [1] or transverse resonance
diffraction (TRD) version [2]. A coupled transmission line
approach, obtained in terms of the modes of the empty guide
is used in the literature as a tool appropriate for theoretical
investigation, but unsuited for numerical implementation [3],
[4] due to the very large number of coupled transverse
electric/transverse magnetic (TE/TM) lines resulting from this
discretization of the guide.

Starting from the differential equations governing the prop-
agation of the transverse fields along the guide [5], however,
it is possible to formulate and discretize a direct eigenvalue
problem in terms of a new set of frequency-independent real
vector fields thatimplicitly satisfy all boundary and edge
conditions of the real problem, coinciding with the exact
hybrid fields at the modal cutoffs. The formal completeness
of the new expanding functions set is guaranteed by the
fact that they constitute the eigenfunctions of the transverse
wave equation (5). Orthonormality of the expanding set is not
actually required in the discretization process.
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As will be described briefly, the new expanding functions
feature some very remarkable properties that greatly simplify
the analytical model as well as the discretization process.
Moreover, their use produces a compact and numerically
effective algorithm for tracing the dispersion characteristics
of numerous modes of the spectrum, as required, e.g., in
abrupt discontinuity problems. The modes resulting from this
method are not automatically orthonormal, but if required, they
be made so by application of the classical Gram–Schmidt
algorithm.

Numerical examples of ordinary and complex propagation
are provided for the case of unilateral finline with infinitely
thin metallization.

It is noted that although finite thickness is currently ac-
counted for in recent works on this subject [9], [10], because
of its singular edge condition, the thin case actually poses the
hardest convergence test of the field expansion.

II. THEORY

The authors start with the field equations governing the
propagation of the transverse fields along the guide, in absence
of sources as in [5]. These are

(1)

where are the transverse
components of the hybrid field, is the dyadic identity,

is the free-space wavenumber; each con-
tain both longitudinal-section (LSE)/electric–magnetic (LSM)
components which separate at cutoff [6], where .

If the authors write ,
the following properties of these components can also be
proved at cutoff (see the Appendix):

(2a)

(2b)
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(3)

where are the electric/magnetic Hertzian potentials,
the cutoff wavenumbers of the LSE/LSM parts of the

field, respectively; from Lorentz’s theorem, the authors have,
for the LSE/LSM components of two distinct modes ( ):

(4a)

(4b)

Moreover, it can be shown that the LSE/LSM components
at cutoff are solutions of the following transverse eigenvalue
equations and, consequently, they form a complete set

(5a)

(5b)

On account of these noteworthy properties of the LSE/LSM
modal components at cutoff,the authors select these as an
expanding set for the transverse fields: in this way all boundary
and edge conditions are implicitly enforced and satisfied; in
particular, the authors expand the transverse fields of a hybrid
mode as

(6a)

(6b)

By substituting (6) in (1) and exploiting the above prop-
erties (3)–(5), the authors will recover a particularly simple,
discretized version of (1).

As a starting point the authors insert the transverse fields
and (6) in (1), obtaining

(7a)

(7b)

Now the authors form the scalar product between
and (7a) and (7b) , respectively,

yielding, after integration over the cross section:

(8a)

(8b)

Equations (8a) and (8b) form the sought compact version of
(1), being and

...

...

...

...

(9)

being the vectors of the LSE/LSM amplitudes appearing in (6).
In (8a) and (8b) the authors introduced

diag

diag

is the real matrix formed by the “overlapping” of the real
expanding functions, its hermitian conjugate,
describes the same overlapping weighted by the dielectric
constant . Both these matrices are block-partitioned and of
the Hermitian type:

(10a)

(10b)
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Since the fields are, in fact, real, the authors have
.

The are diagonal matrices formed by the squares of
the LSE/LSM cutoff frequencies, respectively. It is also noted
that at cutoff ( ), the right-hand side (RHS) of (8) become
eigenvalue equations for the cutoff frequencies.

It is noted that the expansion functions individually satisfy
boundary and edge conditions on strips/apertures, being the
exact solutions at cutoff. In fact, a single term expansion in
(6) is very accurate for an ordinary mode even well above
cutoff.

Each of the two systems (8a) and (8b) is constituted
by -linear equations in -unknown expanding coeffi-
cients ;
therefore (8a) and (8b) can be combined in order to
form a single system characterized by -equations in

-unknown coefficients , (or
); its determinant is a polynomial

equation for the square of the complex propagation constant,
.
Firstly, the authors premultiply (6a) and (6b) by (the

inverse of , assumed nonsingular) and divide both members
by obtaining

(11)

Substituting from the above equation in (8b) yields

hence, for :

(12)

where

diag

that is, is a diagonal matrix with elements of the type:
being the cutoff frequency of the LSM

or LSE component in (6a) and (6b). In (12), the authors took
into account that (the field at cutoff being pure real).
Equation (12) can be rewritten as

(13)

Consequently, the authors are left with just a generalized
eigenvalue problem for .

Once the frequency is fixed, each eigenvalue yields
the corresponding eigenvector , which, in turn, gives
the transverse modal magnetic field in (6b). The other
eigenvector , producing the TE field in (6a),
can be easily derived from (8a). The longitudinal components

are evaluated as in [4]:

It is particularly convenient to deal with theexplicit eigen-
value (12), for, in this case, the eigenvalues are obtained
in a direct manner through the solution of (13), by means of
any one of the many reliable and compact algorithms that are
currently available.

On the other hand, in the standard Transverse Resonance
Methods, the construction of the modal curves is based on the
solution of animplicit eigenvalue problem in a more general
sense, that is, of the type:

(14a)

where is the transverse immittance of the guide and the
dispersion curves are evaluated by imposing the condition:

(14b)

where the difficulty is posed by the search of the complex
zeros of the rapidly varying function .

Another difficulty is usually constituted by the exact con-
struction of the modal characteristics, that is the correct
attribution to the th mode of the corresponding curve
without overlapping with other curves. In synthesis, the present
method consists of three steps.

1) Search of the cutoff frequencies and their related trans-
verse vector fields components to be used as
expanding eigenfunctions in (6a) and (6b).

2) Solution of the eigenvalue equation (13) and determina-
tion of the corresponding eigenvector .

3) Construction of the dispersion characteristics and of the
modal field for every mode under investigation.

The second step is the kernel of the present method which
is applicable to any type of lossless closed waveguide, being
able to describe any type of propagating mode in the structure,
that is, ordinary modes (apart from the TEM mode) as well as
complex modes, as illustrated in the next paragraph.

Comparing the explicit eigenvalue equation (13) and the
standard dispersion equation (14b) some of the most attractive
features of the former become evident.

a) Cutoff fields and frequencies are easier to compute then
ordinary points: once they have been computed by means
of any technique, e.g., the TRD method, the dispersion
curves are found by finding the eigenvalues of (13):
this is a simple task and it takes only a negligible time
with respect to using (14b). Consequently, our algorithm
becomes increasingly advantageous and effective as the
frequency band to be scanned increases.
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b) Due to the particular choice of the discretizing functions,
just two expanding functions are normally involved from
an ordinary mode, one LSE, the other LSM, so that ma-
trix dimensions are very small and numerical accuracy is
inherently high. On the other hand, techniques that rely
on equations such as (14), have to handle cumbersome
matrices with nearly vanishing determinants, posing
the well known problems of numerical accuracy and
numerical degeneracy (spurious solutions, crossing of
characteristics). This is also true for the determination
of fields: the frequency dependence of the field is
contained in the coefficient and and (6) allows
this dependence to be computed at all frequencies very
simply.

c) At cutoff the modes are pure LSE or LSM; by using one
mode LSE and one LSM as expanding functions, the
authors can trace two hybrid characteristics, originating
from the two cutoff modes. By repeating this proce-
dure, a number of modal characteristics can be traced;
the existence of degenerate modes does not pose any
particular problem. When solving (14), instead, it often
happens that when following the zeros of the determi-
nant, the numerical solution skips from one characteristic
to another, particularly when dealing with degenerate
modes. Indeed, our approach allows to correctly trace
the characteristic curves for many modes, overcoming
the problems associated with degenerate modes and
avoiding the appearance of spurious solutions.

III. COMPLEX MODES

The main features of complex modes are as follows:

1) they have complex propagation constants despite the
lossless nature of the structure;

2) a single complex mode carries no complex power,
two complex waves form a pair that is not orthogonal
with respect to cross power and consequently a pair
as a whole behaves as an ordinary mode below cutoff
carrying purely reactive power. Now let us consider
equation (8a) and form the scalar product

(15)

where the authors have set:

From a physical point of view, (15) represents just the
complex power carried by a single mode, that is

(16)

being [ is its Hermitian conju-
gate], the eigenvectors corresponding to a-eigenvalue.

In the light of (15), (16) and taking into account property 2)
above, the authors derive necessary and sufficient conditions

in order to obtain complex modes:

(17)

In the bilinear forms (17), are the eigen-
vectors of (8) corresponding to the complex eigenvalue

those corresponding to the complex con-
jugate eigenvalue . represents the power carried by
the first mode [ ] when the authors consider
it individually, i.e., not coupled with the second one
characterized by . Dually, represents the
power carried by , when the authors consider it
on its own, i.e., not coupled with .

On the other hand, the complex power carried by a pair
of complex modes, that is when both and are
coupled to each other, must be nonvanishing, that is

(18)

Since the sum of and produces just reactive power,
a pair of complex modes behaves as a mode below cutoff
carrying purely reactive power; they form a pair not orthogonal
over the cross section.

In general, in order to satisfy (17), the matrix must to be
indefinite; this result is in accordance with that reported in [8].

IV. RESULTS

A. The Unilateral Finline

The authors now compare the results of the new approach
with existing ones in the case of finline with thin metallization,
as in this case the inverse square root edge condition poses the
hardest convergence test of the fields.

As discussed in the previous section, the present method
requires an independent initial calculation and storage of
modal cutoffs and of the LSE/LSM components of the field
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Fig. 1. Unilateral finline cross section;a = 10:16 mm, l = h+ s = 11:43

mm, s = 0:254 mm, 2w = 0:2a, "r = 2:2.

Fig. 2. Comparison between present theoretical data, TRD results and ex-
perimental values of the dispersion curves [6].

distributions at cutoff to be used in (6) and (13). The prop-
agation constant being zero, this is a quick process, that can
be accomplished once by using any classical technique, e.g.,
TRD as employed in [2] or [6]. It is noted that the precision
required in the cutoff frequencies is an order of magnitude
higher than for the cutoff fields, the latter not constituting
particularly sensitive data.

Also the authors have to compute only once the frequency
independent matrices appearing in (8), (13) from the
stored fields values at cutoff. After this point, the solution
of (8), (13) and the tracing of dispersion characteristics is
a virtually analytical task, for the prudent choice of the
expanding set ensuresa priori satisfaction of all boundary
and edge conditions so that the dimensions of matrices
are very limited indeed; just two terms, one LSM, one LSE
(overall system dimensions 4 4) are sufficient to describe
even a complex mode.

B. Ordinary Modes

Fig. 1 shows the finline cross section adopted in the numer-
ical examples of Figs. 2–4; the geometrical characteristics and
cutoff frequencies computed by TRD for the first 15 modes
are shown in Table I.

In Fig. 2, the authors compare the propagation constants
computed by this approach with experimental values of [6]

Fig. 3. Attenuation constants for the first six modes.

(a)

(b)

Fig. 4. (a) Ex(x; y1) field behavior for the finline of Fig. 1, with
y1 = 0:1143 mm (continuous line: present analysis; dashed lines: TRD
[6]). (b) Ey(x; y1) field behavior for finline in Fig. 1, withy1 = 0:1143

mm (continuous line: present analysis; dashed lines: TRD [6]).

for the first two modes of the above finline; one notes that
theoretical results of [6] are indistinguishable from the present
ones. The running time required for this computation is greatly
reduced with respect to the TRD approach: this is mainly due
to the explicit form of the eigenvalue equation, not requiring an
iterative algorithm; moreover the above feature is responsible
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Fig. 5. Dispersion curves for the finline of Table II, with2w = 1:1 mm.

TABLE I
MODAL CUTOFFFREQUENCIES OF THEFIRST 15 MODES FOR THEFINLINE OF FIG. 1

order Cut-off frequency (GHz) type
1 5.1681 LSM
2 13.144 LSM
3 16.005 LSM
4 26.224 LSM
5 26.227 LSM
6 27.251 LSM
7 29.410 LSM
8 30.240 LSE
9 30.240 LSM
10 31.956 LSE
11 32.290 LSE
12 34.516 LSE
13 34.517 LSM
14 39.206 LSE
15 39.269 LSM

for a great improvement in all cases where modal degeneracy
occurs. Some examples of this kind are depicted in Fig. 5.

In Fig. 3, the authors show the attenuation constants com-
puted by this approach, for the first six modes, whereas the
authors report in Fig. 4(a) the field behavior, the
main field component, at the point mm that
falls in the dielectric, but very close to the fins; this location
is significant, since the EM field decays very quickly away
from the fins; Fig. 4(b) shows the field behavior
at the same point: in both cases results are compared with
those computed with the TRD method and good agreement is
obtained. These results validate our approach.

C. Complex Modes

Previous works have demonstrated that finline can support
complex waves [7]–[10].

If the unperturbed guide, i.e., the rectangular metallic box
loaded with a dielectric slab without the fins, allowsdegener-
atemodes, one of the LSE-type, the other of the LSM-type, by
introducing the fins, it is possible to produce complex modes,
even if the permittivity of the dielectric slab is low.

Physically, the metallic insert is a source of diffraction and it
causes energy coupling between the two degenerate LSE/LSM
modes: this fact is a prerequisite for the appearance of complex
waves. Hence the ability of the present approach of effectively
treating degenerate modes is a very convenient feature for
investigating complex modes.

Fig. 6. Dispersion curves for the 10th (LSM) and 11th (LSE) modes of the
finline of Table II (2w = 1:1 mm, the same of Fig. 4).

TABLE II
GEOMETRY AND PERMITTIVITY DEFINING THE SECOND EXAMPLE OF FINLINE

a 3.556 mm
s+ h 3.556 mm
s 0.254 mm
l 3.556 mm
"r 2.22

TABLE III
CUTOFF FREQUENCIES OF THEFIRST 15 MODES FOR THEFINLINE OF TABLE II

order Fc (GHz)
2w = 1:1 mm

Fc (GHz)
2w = 1:3 mm

type

1 15.561 16.256 LSM
2 42.123 42.123 LSM
3 49.699 50.756 LSM
4 82.397 82.429 LSM
5 84.029 84.042 LSM
6 84.370 84.435 LSM
7 91.281 88.673 LSM
8 93.947 93.760 LSE
9 94.216 94.206 LSE
10 102.097 102.609 LSM
11 102.100 102.609 LSE
12 116.428 116.428 LSE
13 117.650 117.656 LSE
14 119.055 118.998 LSM
15 119.055 121.593 LSE

To this purpose, the authors refer to another finline, whose
geometrical parameters and some significant cutoff frequen-
cies for the first 15 modes are shown in Tables II and III,
respectively.

Fig. 5 shows the dispersion curves for mm in this
finline geometry. As can be noted, some modal characteristics
cross over and the scanned frequency range is large: computing
times however are but a fraction of the usual reported in [2]
and [6].

If the authors consider the characteristics of the 10th (LSM)
and 11th (LSE) modes, reported in Fig. 6, the authors observe
that their cutoff frequencies virtually overlap apart for a narrow
range near cutoff; the two modes are phase matched over a
broad band, while, at the same time, separately carrying active
power, being ordinary propagating modes.

Below cutoff, however,they form a pair of complex modes;
on the other hand, if the fins are removed, these two modes
become degenerate. If the authors expand the EM field (6) as a
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(a)

(b)

Fig. 7. (a) Dispersion characteristics of a pair of complex modes for the
finline defined in Table II, with2w = 1:1 mm. (b) Distribution of the modal
power pertaining to the complex modes in (a). Dashed line: power of a single
complex mode; continuous line: power of a pair of complex modes.

linear combination of these two modes at cutoff and construct
the matrix (dim 4 4), the authors obtain a pair of
complex conjugate solutions; that is, a two-term expansion
is perfectly capable of describing complex characteristics.

In Figs. 7(a) and 8(a) the propagation and attenuation con-
stants of finlines with apertures mm and
mm, respectively, are reported.

The authors now verify that the power conditions (18) are
satisfied by computing

(a)

(b)

Fig. 8. (a) Dispersion characteristics of a pair of complex modes for the
finline defined in Table II, with2w = 1:3 mm. (b) Distribution of the modal
power pertaining to the complex modes in (a). Dashed line: power of a single
complex mode; continuous line: power of a pair of complex modes.

The above quadratic forms are easily calculated, having
previously formed the (4 4) matrix.

and represent the power carried by a single complex
mode; and are related to the power carried by a pair
of complex modes; namely, the authors have to verify that

and (19)

in order to produce a pair of complex modes.
In Fig. 7(b) the modal power distribution corresponding to

the complex propagation constant of Fig. 7(a) is shown; the
authors observe that the condition (19) is verified over the
range 20–80 GHz within the bounds of the discrete truncation
error; the computed power carried by a single complex mode is
negligible or much less than that carried by a pair of complex
modes.

Analogous considerations hold, in the range 30–50 GHz for
the finline with mm, as shown in Fig. 8(b), verifying
that the authors are dealing with complex modes.
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V. CONCLUSIONS

The authors present a theoretically compact and computa-
tionally efficient analysis of the propagation of hybrid modes
in closed waveguides. Numerical examples were obtained for
ordinary and complex propagation of many modes in finline
in excellent agreement with existing data.

Due to the explicit formulation of the eigenvalue equation
for the complex propagation constant, the proposed method
is seen to overcome some of the typical drawbacks of the
currently used algorithms, such as low numerical accuracy and
efficiency, numerical degeneracy, the appearance of spurious
solutions, and the inability of tracing correctly the crossing
characteristics of degenerate modes.

This is a prerequisite for evaluating by modal methods
discontinuities in planar and other hybrid transmission media
by means of small computers.

APPENDIX

In a lossless reciprocal metal–dielectric guide the electro-
magnetic (EM) field is hybrid in general, being constituted of
coupled LSE and LSM components. For the
authors have

(A1)

At cutoff ( the authors obtain the well-known
separation of the LSE–LSM components:

(A2)

The fields in a medium stratified alongcan be derived by
means of -directed electric/magnetic Hertzian vector poten-
tials . Consequently

(A3)

where

(A4)

and propagation has been assumed in the-direction with
propagation constant. In (A4) are the scalar Hertzian
potentials, the wavenumber. The individual field components
are given by

(A5a)

(A5b)

At the modal cutoff frequencies , the above
fields reduce to

(A6a)

(A6b)

where are cutoff wavenumbers of the LSE/LSM parts
of the field, respectively. The potentials satisfy the
following equations

(A7)

From (A6) and (A7), the authors can easily show that

(A8a)

(A8b)

and

(A9a)

(A9b)
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